Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 16(1): 322, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697397

RESUMEN

BACKGROUND: Dinobdella ferox is the most frequently reported leech species parasitizing the mammalian nasal cavity. However, the molecular mechanism of this special parasitic behavior has remained largely unknown. METHODS: PacBio long-read sequencing, next-generation sequencing (NGS), and Hi-C sequencing were employed in this study to generate a novel genome of D. ferox, which was annotated with strong certainty using bioinformatics methods. The phylogenetic and genomic alterations of D. ferox were then studied extensively alongside the genomes of other closely related species. The obligatory parasitism mechanism of D. ferox was investigated using RNA-seq and proteomics data. RESULTS: PacBio long-read sequencing and NGS yielded an assembly of 228 Mb and contig N50 of 2.16 Mb. Along Hi-C sequencing, 96% of the sequences were anchored to nine linkage groups and a high-quality chromosome-level genome was generated. The completed genome included 19,242 protein-coding genes. For elucidating the molecular mechanism of nasal parasitism, transcriptome data were acquired from the digestive tract and front/rear ends of D. ferox. Examining secretory proteins in D. ferox saliva helped to identify intimate connections between these proteins and membrane proteins in nasal epithelial cells. These interacting proteins played important roles in extracellular matrix (ECM)-receptor interaction, tight junction, focal adhesion, and adherens junction. The interaction between D. ferox and mammalian nasal epithelial cells included three major steps of pattern recognition, mucin connection and breakdown, and repair of ECM. The remodeling of ECM between epithelial cells of the nasal mucosa and epithelial cells of D. ferox may produce a stable adhesion environment for parasitism. CONCLUSIONS: Our study represents the first-ever attempt to propose a molecular model for specific parasitism. This molecular model may serve as a practical reference for parasitism models of other species and a theoretical foundation for a molecular process of parasitism.


Asunto(s)
Genómica , Sanguijuelas , Animales , Filogenia , Modelos Moleculares , Secuenciación de Nucleótidos de Alto Rendimiento , Nariz , Sanguijuelas/genética , Mamíferos
2.
Zookeys ; 1095: 83-96, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836684

RESUMEN

Medicinal leeches in the genus Hirudo have been utilized for therapeutic procedures for thousands of years. To date, six known species of Hirudo are widely distributed in different regions of the Eurasian continent. In this study, a new medicinal leech species Hirudotianjinensis Liu, sp. nov. is described based upon specimens collected from Tianjin City, China. The new species can be distinguished from its congeners by a combination of characters: blackish green dorsum with five continuous yellow longitudinal stripes; six sensillae on dorsal annulus a2 of segments VIII-XXV; greyish green ventrum with irregular bilateral dark brown spots; dorsum and abdomen separated by a pair of pale yellow stripes; front half atrium wrapped by white prostate; apparent albumen gland; epididymis massive in relation to ejaculatory bulb. The phylogenetic tree based upon COI implies a sister relationship to H.nipponia Whitman, 1886. A key to the known species is provided.

3.
BMC Genomics ; 23(1): 76, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073842

RESUMEN

BACKGROUND: Leeches are classic annelids that have a huge diversity and are closely related to people, especially medicinal leeches. Medicinal leeches have been widely utilized in medicine based on the pharmacological activities of their bioactive ingredients. Comparative genomic study of these leeches enables us to understand the difference among medicinal leeches and other leeches and facilitates the discovery of bioactive ingredients. RESULTS: In this study, we reported the genome of Whitmania pigra and compared it with Hirudo medicinalis and Helobdella robusta. The assembled genome size of W. pigra is 177 Mbp, close to the estimated genome size. Approximately about 23% of the genome was repetitive. A total of 26,743 protein-coding genes were subsequently predicted. W. pigra have 12346 (46%) and 10295 (38%) orthologous genes with H. medicinalis and H. robusta, respectively. About 20 and 24% genes in W. pigra showed syntenic arrangement with H. medicinalis and H. robusta, respectively, revealed by gene synteny analysis. Furthermore, W. pigra, H. medicinalis and H. robusta expanded different gene families enriched in different biological processes. By inspecting genome distribution and gene structure of hirudin, we identified a new hirudin gene g17108 (hirudin_2) with different cysteine patterns. Finally, we systematically explored and compared the active substances in the genomes of three leech species. The results showed that W. pigra and H. medicinalis exceed H. robusta in both kinds and gene number of active molecules. CONCLUSIONS: This study reported the genome of W. pigra and compared it with other two leeches, which provides an important genome resource and new insight into the exploration and development of bioactive molecules of medicinal leeches.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Genoma , Genómica , Hirudo medicinalis/genética , Humanos , Sanguijuelas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...